5G Base Station Architecture
Non-Standalone (NSA) Base Stations use Multi-RAT Dual Connectivity (MR-DC) to provide user plane throughput across both the
ation components and antenna mast systems. Upgrading 4G base stations by software to non-standalone (N A) 5G will still require hardware changes. It will act as an interim, but it will still not satisfy the need for true 5G network architecture. The number of base stations needed increases with each generation of mobile technolo
In the 5G millimeter wave era, antennas are getting smaller and smaller, and the number is increasing in pairs. Nowadays, most 4G mobile phones are 2×2, 5G is at least 4×4, and the base station antennas have as many as 128 or 256 antennas. The Internet of Things also requires antennas.
The 5G Base Station uses a set of antennas that connect with the distributed unit. These antennas can be implemented using a passive or active architecture. These are connected to the Base Station cabinet using feeder cables. The Base Station cabinet includes the transceiver and RF processing functions.
Nowadays, most 4G mobile phones are 2×2, 5G is at least 4×4, and the base station antennas have as many as 128 or 256 antennas. The Internet of Things also requires antennas. As introduced above, the required antennas will change to a certain extent according to the characteristics of 5G.
PDF version includes complete article with source references. Suitable for printing and offline reading.
Download detailed specifications, case studies, and technical data sheets for our ESS containers and containerized PV systems.
15 Rue des Énergies Renouvelables
Paris 75015, France
+33 1 84 83 72 76
Monday - Friday: 8:30 AM - 6:30 PM CET