Optimal Configuration and Empirical Analysis of a Wind–Solar
This paper develops a capacity optimization model for a wind–solar–hydro–storage multi-energy complementary system. The objectives are to improve net system income,
Han et al. have proposed a complementarity evaluation method for wind, solar, and hydropower by examining independent and combined power generation fluctuation. Hydropower is the primary source, while wind and solar participation are changed in each scenario to improve power system operation.
Constraints (9) and (10) allow pure wind or solar plants to be solutions varying from zero to the nominal HPU Power. Constraints (11) and (12) consider that the power produced by each source at a given moment must be equal to or higher than zero and less than the total installed capacity.
The integration rates of wind and solar power are 64.37 % and 77.25 %, respectively, which represent an increase of 30.71 % and 25.98 % over the MOPSO algorithm. The system's total clean energy supply reaches 94.1 %, offering a novel approach for the storage and utilization of clean energy. 1. Introduction
The intermittent nature of wind and solar sources poses a complex challenge to grid operators in forecasting electrical energy production. Numerous studies have shown that the combination of sources with complementary characteristics could make a significant contribution to mitigating the variability of energy production over time.
PDF version includes complete article with source references. Suitable for printing and offline reading.
Download detailed specifications, case studies, and technical data sheets for our ESS containers and containerized PV systems.
15 Rue des Énergies Renouvelables
Paris 75015, France
+33 1 84 83 72 76
Monday - Friday: 8:30 AM - 6:30 PM CET