Supercapacitor
OverviewBackgroundHistoryDesignStylesTypesMaterialsElectrical parameters
(y) Electrolytic capacitors feature nearly unlimited charge/discharge cycles, high dielectric strength (up to 550 V) and good frequency response as alternating current (AC) reactance in the lower frequency range. Supercapacitors can store 10 to 100 times more energy than electrolytic capacitors, but they do not support AC applications.
Unlike ordinary capacitors, supercapacitors do not use a conventional solid dielectric, but rather, they use electrostatic double-layer capacitance and electrochemical pseudocapacitance, both of which contribute to the total energy storage of the capacitor.
Asymmetric supercapacitors (ASC) have shown a great potential candidate for high-performance supercapacitor due to their wide operating potential which can remarkably enhance the capacitive behavior.
Supercapacitors occupy the gap between high power/low energy electrolytic capacitors and low power/high energy rechargeable batteries. The energy W max (expressed in Joule) that can be stored in a capacitor is given by the formula This formula describes the amount of energy stored and is often used to describe new research successes.
PDF version includes complete article with source references. Suitable for printing and offline reading.
Download detailed specifications, case studies, and technical data sheets for our ESS containers and containerized PV systems.
15 Rue des Énergies Renouvelables
Paris 75015, France
+33 1 84 83 72 76
Monday - Friday: 8:30 AM - 6:30 PM CET