Evaluating the Cost of Flooded Lead Acid Batteries vs Alternative
Flooded lead acid batteries offer lower upfront costs ($100-$300) but higher long-term expenses due to maintenance and shorter lifespans. Lithium-ion alternatives cost 3-5x
We note that despite the higher facial cost of Lithium technology, the cost per stored and supplied kWh remains much lower than for Lead-Acid technology. The reason is related to the intrinsic qualities of lithium-ion batteries but also linked to lower transportation costs.
Here's why many people think lead-acid batteries are a better deal: You get ~20 kWh of capacity for around $5,000 with typical deep-cycle marine-grade or AGM lead-acid batteries, but say, only ~10 kWh for around $4,000 with high-quality lithium ones. But we must look beyond the nominal dollar per kWh. All batteries die.
And if you discharge a lead-acid battery to 100% DoD, it'll be dead as a doornail. On the other hand, lithium batteries can survive a 100% DoD. A 90% DoD offers a good balance between usable capacity and longevity for most use cases. We set the DoD to 80% for clients who want a long-life pack. Let's go the conservative route and set the DoD to 80%.
Lithium Iron phosphate solution-based is not replaced during operation (3000 cycles are expected from the battery at 100% DoD cycles) The cost per cycle, measured in € / kWh / Cycle, is the key figure to understand the business model.
PDF version includes complete article with source references. Suitable for printing and offline reading.
Download detailed specifications, case studies, and technical data sheets for our ESS containers and containerized PV systems.
15 Rue des Énergies Renouvelables
Paris 75015, France
+33 1 84 83 72 76
Monday - Friday: 8:30 AM - 6:30 PM CET